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1. (a) The norm function |a+ bi| = a2+ b2 is the square of length/modulus of a+ bi when
regarded as a complex number. It is clear that if 0 ̸= |w| ≤ |z|, it is clear that there
exists at least one of {w, iw,−w,−iw} such that one of {z+w, z+iw, z−w, z−iw}
has strictly smaller norm than z, let z + ϵw be that number, where ϵ = ±1 or ± i.
This process may be continued if |w| ≤ |z + ϵw|. However, since |z| is finite, this
process will terminate at finite step, meaning that there exists k = a+bi ∈ Z[i] such
that |z − (a+ bi)w| < |w|. Taking r = z − kw, we obtained the desired claim.

(b) Let I ⊂ Z[i] be an ideal, let d be an element in I such that |d| attains the minimum,
i.e. |d| = min{|x| : x ∈ I}. We will show that I = (d). It is trivial that (d) ⊂ I ,
since d ∈ I . For the other inclusion, let x ∈ I , by division theorem (part (a)), we
have x = kd + r for some k, r ∈ Z[i] such that |r| < |d|. Since r = x− kd ∈ I , if
r ̸= 0, it would contradict minimality assumption of d. Therefore, x = kd ∈ (d).

2. No, the ideal (2, x) ⊂ Z[x] is not principal. Note that (2, x) = {
∑n

i=0 aix
i : n ∈

N, a0 ∈ 2Z, a1, ..., an ∈ Z}. If (2, x) = (f(x)), then either f(x) is constant polynomial
or having degree at least 1. In the first case where f(x) is constant, f(x) must be equal
to 2, then x ̸∈ (2). Otherwise, f(x) is a polynomial of degree at least 1, then clearly
2 ̸∈ (f(x)) since the degree of constant polynomial 2 is strictly smaller. Either case led
to a contradiction, so it was false that (2, x) is a principal ideal.

3. Let I = (1 + i), consider the ring homomorphism Z → Z[i]/(1 + i) by φ(1) = 1 + I .
We have to show that this homomorphism is surjective and the kernel is given by 2Z. For
surjectivity, note that since 1 + i ∈ I , we have i + I = −1 + i, therefore we may write
a+ bi+ I = a− b+ I = φ(a− b), thus showing surjectivity.

It is clear that 2 ∈ I since 2 = (1 + i)(1− i), therefore φ(2) = 0 + I and so 2Z ⊂ kerφ.
Note that φ(1) = 1 + I is not equal to 0 + I (otherwise |1| = 1 < |1 + i| = 2 would
imply that 1 + i is not a generator of the ideal). Therefore 2Z = kerφ ⊊ Z.

By first isomorphism theorem, we obtain the desired result.

4. Assuming the result of Q5c, we have Z[i]/(2) ∼= Z2[x]/(x
2 + 1). Now the polynomial

x2+1 = x2−1 = (x−1)(x+1) = (x+1)2 in Z2[x], since 1 = −1 in that ring. Therefore,
we may write Z2[x]/(x

2 + 1) = Z2[x]/((x+ 1)2) = Z2[x+ 1]/((x+ 1)2) ∼= Z2[y]/(y
2)

by setting y = x+ 1.

One can also formally prove the statement using first isomorphism theorem. Write I =
(2). Inspired by the above, it is natural to define φ : Z2[y] → Z[i]/(2) by φ(y) = 1+ i+I
(since y = x + 1 and x corresponds to i uner the isomorphism Z[x]/(x2 + 1) ∼= Z[i].)
This is a well-defined homomorphism since 2 + I = (1 + I) + (1 + I) = φ(1) + φ(1) =
φ(0) = 0 + I . It remains to prove that φ is surjective and has kernel given by (y2).



Let a + bi + I be any element in Z[i]/(2), then because φ(y) = 1 + i and φ(1) = 1, we
have a+ bi+ I = φ((a− b) + by), this proves surjectivity of φ.

It is also clear that (y2) ⊂ kerφ, since φ(y2) = (1+i)2+I = 2i+I = 0+I since 2i ∈ I .
Conversely, let p(y) ∈ kerφ, we may write p(y) = a0 + a1y + y2

∑N
j=2 ajy

j−2. Then

φ(p(y)) = a0+a1φ(y)+����*
0

φ(y2)
∑N

j=2 ajφ(y
j−2)+I = a0+a1φ(y)+I = a0+a1+a1i+I =

0 + I . This implies that (a0 + a1) + a1i ∈ (2) is a multiple of 2, so both a0, a1 are even
integers in Z2, i.e. 0. Thus we have shown that any polynomial p(y) ∈ kerφ can be
expressed as y2

∑N
j=2 ajy

j−2 ∈ (y2).

By first isomorphism theorem, we obtained the desired result.

5. (a) We will prove in general that for a prime number of Z, the quotient ring Z[i]/(p) is
finite of order p2. Write I = (p), it is possible to show that any element a+ bi+ I ∈
Z[i]/(p) is equal to one of the following {x + yi + (p) : 0 ≤ x, y < p − 1}, and
these elements are distinct. Let a + bi + (p), by performing division algorithm on
a, b, we obtain remainders a − k1p = x and b − k2p = y so that 0 ≤ x, y < p − 1,
clearly (a + bi) − (x + yi) = p(k1 + k2i) ∈ (p), so they represent the same class
a+ bi+ I = x+ yi+ I . The elements of {x+ yi+ (p) : 0 ≤ x, y < p− 1} are all
distinct because otherwise, p would divide a nonzero integer smaller than p, which
is absurd.

(b) By part (a), there are 9 elements in Z[i]/(3), represented by 0, 1, 2, i, 1 + i, 2 +
i, 2i, 1+2i, 2+2i. Write I = (3). Note that we may write (a+bi+I)(a−bi+I) =
a2+b2+I . Also note that, a2+b2 ∈ I precisely when a, b ∈ I , this is simply because
12 = 1 and 22 = 4 is equal to 1 modulo I . Since 1 + I and 2 + I are both their own
inverses, this shows that for a+ bi+ I ̸= 0+ I , a2+ b2+ I is equal to 1+ I or 2+ I ,
which is always invertible. Thus we have (a+bi+I)(a−bi+I)(a2+b2+I)−1 = 1+I .
This shows that any nonzero element in Z[i]/(3) is invertible, so it is a field.
As for Z[i]/(5), we may find explicity zero divisors in the ring. This is due to the
fact that 5 is reducible in Z[i], explicitly 5 = (2 + i)(2 − i). Therefore (2 + i +
(5))(2− i+ (5)) = 5 + (5) = 0 + (5). So it cannot be a field.

(c) For the first isomorphism, we may consider the ring homomorphism φ : Z[x] →
Z[i]/(p) by φ(x) = i. This homomorphism is in fact the composition evi : Z[x] →
Z[i] where evi(f(x)) = f(i) and π : Z[i] → Z[i]/(p) the canonical projection map.
Since both evi and π are surjective, so is their composition. And we have

kerφ = ker(π ◦ evi) = {f(x) ∈ Z[x] : π(evi(f) = 0}
= {f(x) ∈ Z[x] : evi(f) ∈ kerπ}
= ev−1

i (kerπ)

= ev−1
i ((p))

= {f(x) ∈ Z[x] : f(i) = p · (a+ bi)}
= {f(x) ∈ Z[x] : (f − pg)(i) = 0 for some g ∈ Z[x]}
= {f(x) ∈ Z[x] : f(x)− pg(x) = (x2 + 1)h(x)}
= (p, x2 + 1).

This proves that Z[x]/(p, x2 + 1) ∼= Z[i]/(p) by first isomorphism theorem.



The other one is obtained similarly, by considering a homomorphism ψ : Z[x] →
Zp[x]/(x

2+1), which is given by a composition rp : Z[x] → Zp[x] and π : Zp[x] →
Zp[x]/(x

2+1). Again, both maps are quotient maps (the map rp sends f(x) to f(x)
where the coefficients are taken to be mod p) so they are surjective, and it suffices
to compute the kernel.

kerψ = ker(π ◦ rp) = {f(x) ∈ Z[x] : π(rp(f)) = 0}
= r−1

p (kerπ)

= r−1
p ((x2 + 1))

= {f(x) ∈ Z[x] : f(x) = (x2 + 1) · g(x)}
= {f(x) ∈ Z[x] : f(x)− (x2 + 1)g(x) = ph(x)}
= (p, x2 + 1).

Here in the second last equality, we are identifying Z[x] → Zp[x] ∼= Z[x]/(p).
Meaning that f(x) and (x2 + 1)g(x) are equal in Zp[x] if and only if they differ
by a multiple of p, when regarded as polynomials over Z[x]. This implies that
Z[x]/(p, x2 + 1) ∼= Zp[x]/(x

2 + 1).

Long remark: The series of preceding exercise should highlight the difficulty in the study
of Z[i]/(a+ bi) in general. For example, when a+ bi = p is an ordinary prime number of
Z, then the quotient Z[x]/(p) depends on whether p can be written as a product of non-
unit elements in Z[i], i.e whether p is irreducible in Z[i]. It turns out that such p precisely
corresponds the prime numbers that can be expressed as a sum of two squares. There is
a remarkable theorem dating back to Fermat that describes the prime numbers p ∈ Z that
can be expressed as sum of two squares, these are exactly the primes whose remainder
modulo 4 is 1. For example, 5 ≡ 1 modulo 4, and it can be expressed as a sum 12 + 22.
Therefore, it is reducible in Z[i] since 5 = 12 +22 = (1+2i)(1− 2i). On the other hand,
3 is not equivalent to 1 modulo 4, and it cannot be expressed as sum of two squares, and
it is irreducible in Z[i], so the quotient ring is a field (of order 9), which gives an example
of a finite field not of the form Z/pZ.

In the case when gcd(a, b) = 1, we in fact do have a clean description of Z[i]/(a+bi), it is
isomorphic to Z/(a2 + b2)Z. This can be proven rather directly, using methods described
in the lecture and tutorial. One simply consider the homomorphism Z → Z[i]/(a + bi).
Then the coprime condition guarantees the surjectivity: there are x, y ∈ Z so that ax +
by = 1, therefore (a + bi)(y + xi) = (ay − bx) + (ax + by)i = k + i and we have
i+ I = −k + I .

The case when a, b are not necessarily coprime is more complicated, it can be solved
using a generalization of the Chinese remainder theorem, and factorization of a Gaussian
integers into irreducibles. Nonetheless, there is a nice geometric picture that allows one to
gain intuitions on the structure of Z[i]/(a+ bi), at least revealing the underlying additive
group structure. One may think of Z[i] as a lattice in the complex plane C, that means
that (Z[i],+) ∼= Z × iZ ∼= Z2 as abelian groups. Then the underlying additive subgroup
structure of any ideal (a+ bi) ⊂ Z[i] is a sublattice, i.e. (a+ bi) = {(a+ bi) · (x+ yi) :
x+yi ∈ Z[i]} = (a+ bi)Z× i(a+ bi)Z ⊂ Z2. Using, the example of Z[i]/(1+3i) again,
we have the following diagram.



The dots are elements in Z[i]. The larger square lattice (the black dots) is the ideal (1+3i).
Dots with the same color represent the same element in the quotient Z[i]/(1 + 3i). The
red dot is the multiplicative identity 1 + (1 + 3i), which happens to be a generator of
the additive group structure of quotient ring, as depicted by the black arrow. When the
element ”escapes” the ”fundamental parallelogram”, i.e. the square with its elements
labelled, it is equivalent to the element in original one after a translation by elements in
(1 + 3i). For example, 3 + 1 = 4 represents the same element as 1 + i. And one can see
the cyclic structure pictorial from this diagram.

Homework for you: Try to see for yourself what happens when we consider Z[i]/(p)
where p ∈ Z is an integer prime, and compare Z[i]/(1 + i) and Z[i]/(2 + 2i).

6. For a cubic polynomial, it is reducible if and only if it has a root. This is because if a cubic
is reducible, it will factor into a linear term times a quadratic term, or a product of three
linear terms. In either case, there will be a root corresponding to the linear term. Thus, it
suffices to check: f(0) = 1, f(1) = 4, f(2) = 3, f(3) = 4 and f(4) = 3; and g(0) = 2,
g(1) = 2, g(2) = 1, g(3) = 1 and g(4) = 4. So both polynomials are irreducible.

7. (a) If f(x) = x4+ kx2+1 is reducible in Z[x], suppose that it has a linear factor x− a,
i.e. f(a) = 0. Then by f(x) = f(−x), we also have f(−a) = 0. Therefore x+ a is
also a factor. So f(x) = (x2−a2)(x2+cx+d) = x4+cx3+(d−a2)x2+a2cx−a2d.
Looking at degree 3 coefficients gives c = 0. And −a2d = 1, which implies that a =
±1 and d = −1. In this case, f(x) = (x2−1)(x2−1) = (x2+2x+1)(x2−2x+1).
Assume now that f(x) does not have irreducible linear factor, then it must be a
product of irreducible quadratic factors f(x) = (x2 + ax + b)(x2 + cx + d) =
x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd. By considering degree 3 coefficients,
we obtain c = −a immediately. So that f(x) = x4+(−a2+b+d)x2+a(d−b)x+bd.



Since the constant term bd = 1, this implies that b = d = 1 or b = d = −1.
Therefore, f(x) = x4+(2b− a2)x2+1. And we have k = 2b− a2 = ±2− a2. The
irreducible factors are x2 + ax+ b and x2 − ax+ b, where b = ±1.

(b) The first statement follows from part (a), from the previous argument, if f(x) has
linear factors, then f(x) = (x2 − 1)(x2 − 1) = (x2 + 2x + 1)(x2 − 2x + 1) =
x4 − 2x2 + 1, so we have a = 0, b = −1 or a = −2, b = 1. In either case,
k = −2 = 2b− a2.
If f(x) is reducible and does not have linear factors, then this case was already
explained in part (a), we necessarily have k = 2b− a2.

(c) If f(x) = x4 − 22x2 + 1 was reducible, then −22 = ±2 − a2, i.e. a2 = 20 or
a2 = −24, both are impossible since a ∈ Z. Therefore f must be irreducible.

(d) f(x) = x4 − 23x2 + 1 is reducible since f(x) = (x2 − 5x+ 1)(x2 + 5x+ 1).


